Search results for "Bayesian [statistical analysis]"
showing 10 items of 299 documents
Can bayesian models play a role in dental caries epidemiology? Evidence from an application to the BELCAP data set
2012
Objectives The aim of this study was to show the potential of Bayesian analysis in statistical modelling of dental caries data. Because of the bounded nature of the dmft (DMFT) index, zero-inflated binomial (ZIB) and beta-binomial (ZIBB) models were considered. The effects of incorporating prior information available about the parameters of models were also shown. Methods The data set used in this study was the Belo Horizonte Caries Prevention (BELCAP) study (Bohning et al. (1999)), consisting of five variables collected among 797 Brazilian school children designed to evaluate four programmes for reducing caries. Only the eight primary molar teeth were considered in the data set. A data aug…
Social Network-Based Content Delivery in Device-to-Device Underlay Cellular Networks Using Matching Theory
2017
With the popularity of social network-based services, the unprecedented growth of mobile date traffic has brought a heavy burden on the traditional cellular networks. Device-to-device (D2D) communication, as a promising solution to overcome wireless spectrum crisis, can enable fast content delivery based on user activities in social networks. In this paper, we address the content delivery problem related to optimization of peer discovery and resource allocation by combining both the social and physical layer information in D2D underlay networks. The social relationship, which is modeled as the probability of selecting similar contents and estimated by using the Bayesian nonparametric models…
Physics-Aware Gaussian Processes for Earth Observation
2017
Earth observation from satellite sensory data pose challenging problems, where machine learning is currently a key player. In recent years, Gaussian Process (GP) regression and other kernel methods have excelled in biophysical parameter estimation tasks from space. GP regression is based on solid Bayesian statistics, and generally yield efficient and accurate parameter estimates. However, GPs are typically used for inverse modeling based on concurrent observations and in situ measurements only. Very often a forward model encoding the well-understood physical relations is available though. In this work, we review three GP models that respect and learn the physics of the underlying processes …
Reference Priors in a Variance Components Problem
1992
The ordered group reference prior algorithm of Berger and Bernardo (1989b) is applied to the balanced variance components problem. Besides the intrinsic interest of developing good noninformative priors for the variance components problem, a number of theoretically interesting issues arise in application of the proposed procedure. The algorithm is described (for completeness) in an important special case, with a detailed heuristic motivation.
Hydrological post-processing based on approximate Bayesian computation (ABC)
2019
[EN] This study introduces a method to quantify the conditional predictive uncertainty in hydrological post-processing contexts when it is cumbersome to calculate the likelihood (intractable likelihood). Sometimes, it can be difficult to calculate the likelihood itself in hydrological modelling, specially working with complex models or with ungauged catchments. Therefore, we propose the ABC post-processor that exchanges the requirement of calculating the likelihood function by the use of some sufficient summary statistics and synthetic datasets. The aim is to show that the conditional predictive distribution is qualitatively similar produced by the exact predictive (MCMC post-processor) or …
Decomposition of Dynamic Single-Product and Multi-product Lotsizing Problems and Scalability of EDAs
2008
In existing theoretical and experimental work, Estimation of Distribution Algorithms (EDAs) are primarily applied to decomposable test problems. State-of-the-art EDAs like the Hierarchical Bayesian Optimization Algorithm (hBOA), the Learning Factorized Distribution Algorithm (LFDA) or Estimation of Bayesian Networks Algorithm (EBNA) solve these problems in polynomial time. Regarding this success, it is tempting to apply EDAs to real-world problems. But up to now, it has rarely been analyzed which real-world problems are decomposable. The main contribution of this chapter is twofold: (1) It shows that uncapacitated single-product and multi-product lotsizing problems are decomposable. (2) A s…
Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues
2011
In this article, we describe the estimation of linear regression models with uncertainty about the choice of the explanatory variables. We introduce the Stata commands bma and wals, which implement, respectively, the exact Bayesian model-averaging estimator and the weighted-average least-squares estimator developed by Magnus, Powell, and Prüfer (2010, Journal of Econometrics 154: 139–153). Unlike standard pretest estimators that are based on some preliminary diagnostic test, these model-averaging estimators provide a coherent way of making inference on the regression parameters of interest by taking into account the uncertainty due to both the estimation and the model selection steps. Spec…
Bayesian calibration of the nitrous oxide emission module of an agro-ecosystem model
2008
1. NitroEurope Open Science Conference on Reactive Nitrogen and the European Greenhouse Gas Balance ; Ghent (Belgique) - (2008-02-20 - 2008-02-21) / Conférence; Nitrous oxide (N2O) is the main biogenic greenhouse gas contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate therefore requires a capacity to predict N2O emissions in relation to environmental conditions and crop management. Biophysical models simulating the dynamics of carbon and nitrogen in agro-ecosystems have a unique potential to explore these relationships, but are fraught with high uncertainties in their parameters due to their variations over time and space. H…
Bayesian network based pathway analysis of microarray data
2011
Graph Topology Learning and Signal Recovery Via Bayesian Inference
2019
The estimation of a meaningful affinity graph has become a crucial task for representation of data, since the underlying structure is not readily available in many applications. In this paper, a topology inference framework, called Bayesian Topology Learning, is proposed to estimate the underlying graph topology from a given set of noisy measurements of signals. It is assumed that the graph signals are generated from Gaussian Markov Random Field processes. First, using a factor analysis model, the noisy measured data is represented in a latent space and its posterior probability density function is found. Thereafter, by utilizing the minimum mean square error estimator and the Expectation M…